簡(jiǎn) 歷:
張海倉(cāng),博士,曾任哥倫比亞大學(xué)博后科學(xué)家,字節(jié)跳動(dòng)算法工程師。主要研究方向?yàn)樯镄畔?AI蛋白質(zhì)設(shè)計(jì)和計(jì)算基因組學(xué))和生成式AI模型。設(shè)計(jì)了預(yù)測(cè)基因變異致病性預(yù)測(cè)算法MVP、gMVP和DiffAffinity;開(kāi)發(fā)了蛋白質(zhì)設(shè)計(jì)算法CarbonDesign, CarbonNovo, AbX;開(kāi)發(fā)了蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)算法CarbonFold。致力于建立生物大分子(蛋白質(zhì)、DNA、RNA)結(jié)構(gòu)預(yù)測(cè)和設(shè)計(jì)的統(tǒng)一生成模型。
主要論著:
1.Haicang Z, et al, Yufeng S. Predicting functional effect of missense variants using graph attention neural networks. Nature Machine Intelligence. 2022
2. S. Liu, T. Zhu, M. Ren, C. Yu, D. Bu, H. Zhang#. Predicting mutational effects on protein-protein binding via a side-chain diffusion probabilistic model. NeurIPS, 2023
3. M. Ren, C. Yu, D. Bu#, H. Zhang#. Accurate and robust protein sequence design with CarbonDesign. Nature Machine Intelligence. 2024
4. CarbonNovo: joint design of protein structure and sequence using a unified energy-based model. M. Ren, T. Zhu, H. Zhang#. ICML, 2024.
5. Antibody design using a score-based diffusion model guided by evolutionary, physical and geometric constraints. T. Zhu, M. Ren, H. Zhang#. ICML 2024?
張海倉(cāng) 副研究員
研究方向:
所屬部門(mén):前瞻研究實(shí)驗(yàn)室
導(dǎo)師類別:碩導(dǎo)
聯(lián)系方式:zhanghaicang@ict.ac.cn
個(gè)人網(wǎng)頁(yè):https://zhanghaicang.github.io